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System Dynamics and Mechanical 

Vibration

• Lecture aims:

• Formulate the equations of  motion of  two-degree-of-freedom systems

• Identify the mass, damping, and stiffness matrices from the equations of  motion



Two Degree-of-Freedom Systems

1. Model problem

Matrix form of  governing equation 

Special case: Undamped free vibrations

Examples

2. Transformation of  coordinates

Inertially & elastically coupled/uncoupled

General approach: Modal equations

Example

3. Response to harmonic forces

Model equation

Special case: Undamped system
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[k ], and [ c ], [ m ] are called the stiffness , 
damping, and mass matrices respectively,

Two-Degree-of Freedom Systems
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Thus the system has one point mass m
and two degrees of freedom, because the 

mass has two possible types of motion 
(translations along the y and x directions). 

The general rule for the computation of 
the number of degrees of freedom can be 

stated as follows

Two-Degree-of Freedom Systems
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Modeling of  Mechanical System 

• Spring - Mass - Damper
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Equations of motion:

Two-Degree-of Freedom Systems



Modeling of  Mechanical system 

Mathematical Models for the Schematic

• Free Body Diagram FBD



Modeling of  Mechanical system 

Write equation of  motion: Two degree of  freedom 

Assume X1 >X2 positive direction of  motion 

• For mass(1)



Modeling of  Mechanical system 

Write equation of  motion: Two degree of  freedom 

Assume X1 >X2 positive direction of  motion 

• For mass(2)
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Equations of motion:

Two-Degree-of Freedom Systems



Ta t( ) Ts t( ) 0

Ta t( ) Ts t( )

 t( ) s t( ) a t( )

Ta t( ) = through - variable

angular rate difference = across-variable 

Modeling of  Mechanical System 



Example
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Equations of motion:

Two-Degree-of Freedom Systems



Two-DOF model problem 

Matrix form of  governing equation:



Two-DOF model problem 

Matrix form of  governing equation:
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where: [M] = mass matrix; [C] = damping matrix;

[K]  = stiffness matrix; {P} = force vector

Note: Matrices have positive diagonals and are symmetric.



Undamped free vibrations

Zero damping matrix [C] and force vector {P}
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Assumed general solutions:

Substitute in equation of motion: 
(Characteristic equation)
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Mx¨ + Kx = 0Equation of motion (free-undamped):



Undamped free vibrations

Zero damping matrix [C] and force vector {P}

Characteristic polynomial (for det[ ]=0):

0
21

212

2

2

1

214 












mm

kk

m

k

m

kk

























































2
1

21

21

2

2

2

1

21

2

2

1

212

2
1

2
1

4

2

1

mm

kk

m

k

m

kk

m

k

m

kk


Eigenvalues (characteristic values):

Characteristic equation:
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Undamped free vibrations

Special case when k1=k2=k and m1=m2=m

Eigenvalues and frequencies:
period lfundamenta

frequency lfundamenta
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Two mode shapes (relative participation of each mass in the motion):

The two eigenvectors are orthogonal:
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Undamped free vibrations

Two mode shapes (relative participation of each mass in the motion):



Undamped free vibrations (UFV)

For any set of  initial conditions:

We know {A}(1) and {A}(2), 1 and 2

Must find C1, C2, 1, and 2 – Need 4 I.C.’s
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Single-DOF:

For two-DOF:
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Multi-DOF model equation

Model equation:

Notes on matrices:

They are square and symmetric.

[M] is positive definite (since T is always positive)

[K] is positive semi-definite: 
 all positive eigenvalues, except for some potentially 0-eigenvalues which 

occur during a rigid-body motion.

 If restrained/tied down  positive-definite.  All positive.

          Q xKxCxM 
1) Vector mechanics (Newton or D’ Alembert)

2) Hamilton's principles

3) Lagrange's equations

We derive using:

Multi-DOF systems are so similar to two-DOF.
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  :spring inenergy  Strain

  :energy Kinetic 



Inverted Pendulum



Projects 



Projects 



Projects 



Program


