66

System Dynamics and Mechanical Vibration

If you have a smart project, you can say "I'm an engineer"

Lecture 1

Staff boarder

Dr. Mohamed Saber Sokar
Dr. Mostafa Elsayed Abdelmonem

System Dynamics and Mechanical Vibration

- Lecture aims:
- Formulate the equations of motion of two-degree-of-freedom systems
- Identify the mass, damping, and stiffness matrices from the equations of motion

Two Degree-of-Freedom Systems

1.

Model problem

- Matrix form of governing equation
- Special case: Undamped free vibrations
- Examples

2. Transformation of coordinates

* Inertially \& elastically coupled/uncoupled
- General approach: Modal equations
- Example

3. Response to harmonic forces

- Model equation
- Special case: Undamped system

Two-Degree-of Freedom Systems

[k], and [c], [m] are called the stiffness, damping, and mass matrices respectively,

$$
[m] \ddot{\vec{x}}(t)+[c] \dot{\vec{x}}(t)+[k] \vec{x}(t)=\vec{f}(t)
$$

$\vec{x}(t)$ and $\vec{f}(t)$ are called the displacement and force vectors, respectively.

Two-Degree-of Freedom Systems

Thus the system has one point mass m and two degrees of freedom, because the mass has two possible types of motion (translations along the y and x directions). The general rule for the computation of the number of degrees of freedom can be stated as follows
\times number of possible types of motion of each mass

Modeling of Mechanical System

- Spring - Mass - Damper

Force
(a)

$M \cdot \frac{d^{2}}{d t^{2}} y(t)+b \cdot \frac{d}{d t} y(t)+k \cdot y(t)=r(t)$
(b)
(a) Spring-mass-damper system.
(b) Free-body diagram.

Two-Degree-of Freedom Systems

Equations of motion:

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}(t)+\left(k_{1}+k_{2}\right) x_{1}(t)-k_{2} x_{2}(t)=0 \\
& m_{2} \ddot{x}_{2}(t)-k_{2} x_{1}(t)+\left(k_{2}+k_{3}\right) x_{2}(t)=0
\end{aligned}
$$

We are interested in knowing whether m_{1} and m_{2} can oscillate harmonically with the same frequency and phase angle but with different amplitudes. Assuming that it is possible to have harmonic motion of m_{1} and m_{2} at the same frequency ω and the same phase angle ϕ,

Modeling of Mechanical system

Mathematical Models for the Schematic

- Free Body Diagram FBD

Modeling of Mechanical system

Write equation of motion: Two degree of freedom
Assume $\mathrm{X} 1>\mathrm{X} 2$ positive direction of motion $\xrightarrow{\rightarrow}$

- For mass(1)

$$
\begin{aligned}
& \sum F=-K_{d 1} x_{1}^{\prime}-K_{s 1} x_{1}-K_{d 2}\left(x_{1}{ }^{\prime}-x_{2}{ }^{\prime}\right)-K_{s 2}\left(x_{1}-x_{2}\right)=M_{1} x_{1}{ }^{\prime \prime} \\
& \quad x_{1}{ }^{\prime}\left(M_{1}\right)+x_{1}^{\prime}\left(K_{d 1}+K_{d 2}\right)+x_{1}\left(K_{s 1}+K_{s 2}\right)+x_{2}^{\prime}\left(-K_{d 2}\right)+x_{2}\left(-K_{s 2}\right)=0
\end{aligned}
$$

Modeling of Mechanical system

Write equation of motion: Two degree of freedom
Assume X1 $>$ X2 positive direction of motion $\xrightarrow{\rightarrow}$

- For mass(2)

$$
\begin{aligned}
& \sum F=K_{d 2}\left(x_{1}{ }^{\prime}-x_{2}{ }^{\prime}\right)+K_{s 2}\left(x_{1}-x_{2}\right)+F-K_{d 3} x_{2}{ }^{\prime}-K_{s 3} x_{2}=M_{2} x_{2}{ }^{\prime \prime} \\
& \quad x_{2}{ }^{\prime \prime}\left(M_{2}\right)+x_{2}{ }^{\prime}\left(K_{d 2}+K_{d 3}\right)+x_{2}\left(K_{s 2}+K_{s 3}\right)+x_{1}{ }^{\prime}\left(-K_{d 2}\right)+x_{1}\left(-K_{s 2}\right)=F
\end{aligned}
$$

Two-Degree-of Freedom Systems

Equations of motion:
$[m] \ddot{\vec{x}}(t)+[c] \dot{\vec{x}}(t)+[k] \vec{x}(t)=\vec{f}(t)$

(a)

$$
\begin{aligned}
& m_{1} \ddot{x}_{1}+\left(c_{1}+c_{2}\right) \dot{x}_{1}-c_{2} \dot{x}_{2}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=f_{1} \\
& m_{2} \ddot{x}_{2}-c_{2} \dot{x}_{1}+\left(c_{2}+c_{3}\right) \dot{x}_{2}-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}=f_{2}
\end{aligned}
$$

Modeling of Mechanical System

(a) Torsional spring-mass system.
(b) Spring element.

Example

Moment of Inertia
$J^{\boldsymbol{H}}{ }^{t} \quad T=\boldsymbol{J} \ddot{\theta}$

Two-Degree-of Freedom Systems

Equations of motion:

$$
\begin{gathered}
m_{1} \ddot{x}_{1}+\left(c_{1}+c_{2}\right) \dot{x}_{1}-c_{2} \dot{x}_{2}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=f_{1} \\
m_{2} \ddot{x}_{2}-c_{2} \dot{x}_{1}+\left(c_{2}+c_{3}\right) \dot{x}_{2}-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}=f_{2} \\
{[m] \ddot{\vec{x}}(t)+[c] \dot{\vec{x}}(t)+[k] \vec{x}(t)=\vec{f}(t)}
\end{gathered}
$$

$$
[m]=\left\lfloor\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right\rfloor
$$

$$
[c]=\left[\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}+c_{3}
\end{array}\right]
$$

(a)

$$
[k]=\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right]
$$

Two-DOF model problem

Matrix form of governing equation:

Impose the tho
dioplarements, D^{\prime} Alembats $\sum F_{x}=0$

Two-DOF model problem

Matrix form of governing equation:

Note: Matrices have positive diagonals and are symmetric.

Undamped free vibrations

Zero damping matrix $[\mathrm{C}]$ and force vector $\{\mathrm{P}\}$

- Equation of motion (free-undamped): $M \mathbf{x}^{\prime \prime}+K \mathbf{x}=\mathbf{0}$
- Assumed general solutions:

$$
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right\} \cos (\omega t-\phi)
$$

- Differentiating twice with respect to time: (Acceleration)

$$
\{\ddot{x}\}=-\omega^{2}\left\{\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right\} \cos (\omega t-\phi)
$$

Substitute in equation of motion: (Characteristic equation)

$$
\left(K-\omega^{2} M\right)\left\{\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Undamped free vibrations

Zero damping matrix $[\mathrm{C}]$ and force vector $\{\mathrm{P}\}$

Characteristic equation:

$$
\left[\begin{array}{cc}
\left(k_{1}+k_{2}-m_{1} \omega^{2}\right) & -k_{2} \\
-k_{2} & \left(k_{2}-m_{2} \omega^{2}\right)
\end{array}\right]\left\{\begin{array}{l}
A_{1} \\
A_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

- Characteristic polynomial (for det[]=0):

$$
\omega^{4}-\left(\frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2}}{m_{2}}\right) \omega^{2}+\frac{k_{1} k_{2}}{m_{1} m_{2}}=0
$$

Eigenvalues (characteristic values):

$$
\lambda_{1}=\omega_{2}^{2}=\frac{1}{2}\left\{\left[\frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2}}{m_{2}}\right] \pm\left[\left(\frac{k_{1}+k_{2}}{m_{1}}+\frac{k_{2}}{m_{2}}\right)^{2}-\frac{4 k_{1} k_{2}}{m_{1} m_{2}}\right]^{1 / 2}\right\}
$$

Undamped free vibrations

Special case when $\mathrm{k}_{1}=\mathrm{k}_{2}=\mathrm{k}$ and $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}$
Eigenvalues and frequencies: ${\lambda_{1}}_{2}=\left\{\begin{array}{c}\omega_{1}^{2} \\ \omega_{1}^{2}\end{array}\right\}=\left\{\begin{array}{c}0.3819 \\ 2.618\end{array}\right\} \frac{\mathrm{k}}{\mathrm{m}}$

$$
\begin{aligned}
& \omega_{1}=0.618 \sqrt{\frac{k}{m}}=\text { fundamental frequency } \\
& T=\frac{2 \pi}{\omega}=\text { fundamental period }
\end{aligned}
$$

Two mode shapes (relative participation of each mass in the motion):

$1^{\text {st }}$ mode shape $\frac{A_{2}}{A_{1}}=\frac{2 k-m \omega^{2}}{k}=\frac{1.618}{1}$

Undamped free vibrations

Two mode shapes (relative participation of each mass in the motion):
(a) First mode

(b) Second mode

Undamped free vibrations (UFV)

Single-DOF: $\quad x(t)=C \cos \left(\omega_{n} t+\phi\right)$
For two-DOF: $\{x\}=\left\{\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right\}=C_{1}\left\{\begin{array}{l}A_{1}^{(1)} \\ A_{2}^{(1)}\end{array}\right\} \cos \left(\omega_{1} t+\phi_{1}\right)+C_{2}\left\{\begin{array}{l}A_{1}^{(2)} \\ A_{2}^{(2)}\end{array}\right\} \cos \left(\omega_{2} t+\phi_{2}\right)$
For any set of initial conditions:
\geqslant We know $\{A\}^{(1)}$ and $\{A\}^{(2)}, \omega_{1}$ and ω_{2}
$\diamond \quad$ Must find C_{1}, C_{2}, ϕ_{1}, and $\phi_{2}-$ Need 4 I.C.'s

Multi-DOF model equation

Multi-DOF systems are so similar to two-DOF.

$$
\text { Model equation: } \quad[M]\{\ddot{x}\}+[C]\{\dot{x}\}+[K]\{x\}=\{\mathrm{Q}\}
$$

We derive using:

1) Vector mechanics (Newton or D' Alembert)
2) Hamilton's principles
3) Lagrange's equations

Notes on matrices:
metric.
Kinetic energy: $\quad T=\frac{1}{2}\{\dot{x}\}^{T}[M]\{\dot{x}\}$
Strain energy in spring: $U=\frac{1}{2}\{x\}^{T}[K]\{x\}$

- $[\mathrm{M}]$ is positive definite (since T is always positive)
- $[\mathrm{K}]$ is positive semi-definite:
- all positive eigenvalues, except for some potentially 0 -eigenvalues which occur during a rigid-body motion.
- If restrained/tied down \Rightarrow positive-definite. All positive.

Inverted Pendulum

Projects

Projects

Projects

Program

Express Vibration Lab.vi

