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System Dynamics and Mechanical
Vibration

* Lecture aims:
* FPormulate the equations of motion of two-degree-of-freedom systems

* Identity the mass, damping, and stiffness matrices from the equations of motion




Two Degree-of-Freedom Systems

Model problem
A4 Matrix form of governing equation
®  Special case: Undamped free vibrations
@ Examples

Transformation of coordinates
®  Inertially & elastically coupled/uncoupled
@ General approach: Modal equations
4 Example

Response to harmonic forces

@ Model equation

& gppr‘iq] case: TTanmPPH system




Two-Degree-of Freedom Systems

[k],and [ c], [ m ] are called the stiffness, - - N
damping, and mass matrices respectively, [m] x(1) +[c] x(1) +[k] x(1)

?{I} and ?(r) are called the displacement and prce vectors, respectively,




Two-Degree-of Freedom Systems

Thus the system has one point mass m
and two degrees of freedom, because the
mass has two possible types of motion
(translations along the y and x directions).
The general rule for the computation of
the number of degrees of freedom can be
stated as follows

Number of Number of masses in the system
degrees of freedom = X number of possible types
of the system of motion of each mass




Modeling ot Mechanical System

* Spring - Mass - Damper
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(a)

M-—Zy(t) + b-—y(t) + ky(t) = r(t)
dt dt

(b)

(a) Spring-mass-damper system.
(b) Free-body diagram.




Two-Degree-of Freedom Systems

Equations of motion:

mX,(1) + (ki + k)xi(1) — kaxo(1) =0

myXy(1) — kpxi(1) + (ky + k3)xo(1) =0

We are interested in knowing whether m; and m, can oscillate harmonically with the same
frequency and phase angle but with different amplitudes. Assuming that it is possible to
have harmonic motion of m; and m- at the same frequency @ and the same phase angle ¢,




Modeling of Mechanical system

Mathematical Models for the Schematic
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Modeling of Mechanical system

Write equation of motion: Two degree of freedom

Assume X1 >X2 positive direction of motion —*»-

K, x,—p -«+—K ,(x,'—x,')
d d2 2
* FRormass(ly o M, 1

—K_ 1 x;—» -«+— K ,(x;—x,)

ZF = = Kpx) =K x = Kp(x)' =% ) =Ko (x; = x5) = Mxy"

X)N(My) +xy (K + Kgp) +0 (K + Kgp) + x5 (=K ) +x5(=K5) = 0




Modeling of Mechanical system

Write equation of motion: Two degree of freedom

Assume X1 >X2 positive direction of motion —»-

Kpp(x)'=x)") —

* For mass(2) Ko (xy=x3) —
F— ™

YF = Kp(x)'=x)) + K(x) —x3) + F=Ky3xy)' = K3x) = Myxy"

Xy (My) + x5 (Kygy + Kjg3) +x5(Kp + K3) +x)' (=K pp) +xy(-Ky) = F




Two-Degree-of Freedom Systems

Equations of motion:

—»

[m] x(1) + [] x(r) + [&] ®(1) = A1)

mix) + (1 + )X — Xy + (ki + ko)x; — koxy = f I [
myxy — Xy + (e + c3)xy = kopxy + (ky + k3)xy = fo —h =5

kix; —— . — ky(n-n) <— — kX,

I ¥
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Spring k; under tension Spring k- under tension Spring k- under
for +x for +(x; —x;) compression for +x,




Modeling of Mechanical System

Ta(t) = Ts(t) = 0

Ta(t) = Ts(1)

ﬁ: o(t) = os(t) — wa(t)

a”in

(a) T4(t) = through - variable
a

) ] angular rate difference = across-variable
(a) Torsional spring-mass system.

(b) Spring element.




Moment of Inertia

Example
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Two-Degree-of Freedom Systems

Equations of motion:

mx; + (¢ + c)X; — Xy + (ky + kp)x; — kyxp = f

myxy — Xy + (2 + €3)x2 — koxy + (ky + k3)x; = f

[m] x(1) + [ x(r) + [k] ®(1) = A1)

._,.,FI '_""FE

m' {] . .!f| .Ifz
(m] =

0 nia

kyx) —— — k(x5 — X)) ~— — kx5
ml T A B

[ ¢ Qe — — ol 45— ) ——] — 305

Spring k; under tension Spring k- under tension Spring k- under
for +x for +(x; —x;) compression for +x,




Two-DOF model problem

Matrix form of governing equation:
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Two-DOF model problem

Matrix form of governing equation:

__.r}b’h;ﬂ(.}q.{. Tt Tuo
Asplatecimenty | P AlembadAd
S FEeTe.

m, 0 X, 1 (C1+Cz) —C || % N (k1+k2) _kz Xy
where: [M] = mass matrix; [C] = damping matrix;

[K] = stiffness matrix; {P} = force vector
Note: Matrices have positive diagonals and are symmetric.




Undamped free vibrations

Zero damping matrix [C] and force vector {P}

@ Equation of motion (free-undamped): Mx" + Kx =0

X A
Assumed general solutions: { 1} = { AZ}COS(CO'[ — )

X,

Differentiating twice with respect to time: {x}=— a)z{ Al}COS(C()t — @)
(Acceleration)

Substitute in equation of motion:
(Characteristic equation)




Undamped free vibrations

Zero damping matrix [C] and force vector {P}

(o Bl mywt) e {Al}_{o}
~k, (k, —m,0?) [|A,] |0

84 Characteristic equation:

® Characteristic polynomial (for det[ ]=0):

@’ _(I<1+k2+k2}02 +ﬁ:
ml m2 mlm2

2 Eigenvalues (characteristic values):

g+l K
ml m2




Undamped free vibrations

Special case when k,=k,=k and m;=m,=m

{0.3819} k N 0.618& = fundamental frequency

2.618 | m T _2® = fundamental period

s 3 af
X 4 Eigenvalues and frequencies: 4 = =
2

2
2]

(43)
® Two mode shapes (relative participation of each mass in the motion):
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2k 2e 1618 2" mode shape SRS
1%t mode shape SISO R = g

k—mw
k 1 1 (2)
@ The two eigenvectors are orthogonal: Eigenvector (1) = { }: {1 618} Eigenvector (2) = {2})} ={




A 4

Undamped free vibrations

Two mode shapes (relative participation of each mass in the motion):

{a) First mode (b) Second mode




Undamped free vibrations (UFV)

Single-DOF: X(t) =Ccos(w,t + @)

For two-DOF: {x}= {2 gi} = Cl{ﬁéi}cos(a)lt +¢,)+C, {22)}Cos(a)2t + )

For any set of initial conditions:

® We know {A}® and {A}® ®, and ®,
#  Must find C,, C,, ¢,, and ¢, — Need 4 I.C’s




Multi-DOF model equation

Multi-DOF systems are so similar to two-DOL.

Model equation: [I\/l ]{X} + [C ]{X} -+ [K]{X} . {Q}
We derive using; 1) Vector mechanics (Newton or D’ Alembert)
2) Hamilton's principles
Notes on matrices: 3)  Lagrange's equations
# They are square and symmetric.

¢ Kinetic energy :

# [M] is positive definite (since T is always positive)
# [K] is positive semi-definite:

= all positive eigenvalues, except for some potentially 0-eigenvalues which
occur during a rigid-body motion.

m If restrained/tied down = positive-definite. All positive.




Inverted Pendulum
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Projects
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Program
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Express Vibration Lab.vi




